Agent
An agent is defined by its tools, input/output schemas, and description.async aot(cache: bool = True, strategy: Optional[Strategy] = None) -> Tool- Compile agent to codeasync jit(strategy: Optional[Strategy] = None, **kwargs) -> Any- Execute immediately
Tool
Tools are callable functions with typed inputs and outputs.name: str- Tool identifierdescription: str- What the tool doesinput_schema: type[BaseModel]- Pydantic schema for inputsoutput_schema: type[BaseModel]- Pydantic schema for outputsis_terminal: bool- Whether this ends agent execution
LLM
LLMs are tools that call language models.model: str- Model identifier (e.g., “gpt-4.1”, “claude-3-5-sonnet”)retry_strategy: Optional[RetryStrategy]- Retry configurationoutput_schema: Optional[type[BaseModel]]- Structured output schema
ToolSet
Group related tools together.Skill
Skills provide context or code snippets to agents.SkillSet
Group related skills.Strategy
Configure code generation and verification.RetryStrategy
Configure retry behavior for LLM calls.Context
Manage conversation history.user(content: str)- Add user messageassistant(content: str, tool_calls=None)- Add assistant messagetool(name: str, input: Any, output: Any)- Add tool call result
RAG
Retrieval tools for databases and filesystems.Runtime (Advanced)
Direct access to runtime for advanced use cases.async execute(tool: Tool, **kwargs) -> Any- Execute a toolasync aot(agent: Agent, cache: bool = True) -> Tool- Compile agentasync jit(agent: Agent, **kwargs) -> Any- Execute agent JITget_full_context(labels: List[str]) -> Context- Get merged context